An Atlas of Cortical Arealization Identifies Dynamic Molecular Signatures

Read Paper

Using an automated, multiplexed single-molecule fluorescent in situ hybridization (smFISH) approach, we validated the expression pattern of area-specific neuronal genes and also discover that laminar gene expression patterns are highly dynamic across cortical regions. Together, our data suggest that early cortical areal patterning is defined by strong, mutually exclusive frontal and occipital gene expression signatures, with resulting gradients giving rise to the specification of areas between these two poles throughout successive developmental timepoints.